Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

نویسندگان

  • Mithilesh Kajla
  • Tania P. Choudhury
  • Parik Kakani
  • Kuldeep Gupta
  • Rini Dhawan
  • Lalita Gupta
  • Sanjeev Kumar
چکیده

Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development

The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65-99% amino acid identity among these 19 orthologs permitted us to hypothesize that the function...

متن کامل

miRNA–mRNA Conflux Regulating Immunity and Oxidative Stress Pathways in the Midgut of Blood-Fed Anopheles stephensi

Blood feeding in Anopheles stephensi initiates a cascade of events that modulate several physiological functions in the mosquito. The midgut epithelium activates several of its molecules, most important among these being microRNAs, which regulate some of the physiological changes by targeting diverse mRNAs. The present study was conducted to identify and evaluate interactions between targets of...

متن کامل

Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in Anopheles gambiae.

Anopheles gambiae mosquitoes are major African vectors of malaria, a disease that kills more than 600,000 people every year. Given the spread of insecticide resistance in natural mosquito populations, alternative vector control strategies aimed at reducing the reproductive success of mosquitoes are being promoted. Unlike many other insects, An. gambiae females mate a single time in their lives ...

متن کامل

Enterobacter-Activated Mosquito Immune Responses to Plasmodium Involve Activation of SRPN6 in Anopheles stephensi

Successful development of Plasmodium in the mosquito is essential for the transmission of malaria. A major bottleneck in parasite numbers occurs during midgut invasion, partly as a consequence of the complex interactions between the endogenous microbiota and the mosquito immune response. We previously identified SRPN6 as an immune component which restricts Plasmodium berghei development in the ...

متن کامل

مقایسه تاثیر آنتی‌بادی‌های ضد میان روده پشه آنوفل استفنسی بر روی چرخه اسپروگونی انگل پلاسمودیوم برگئی در دو سویه از آنوفل استفنسی

   Background & Aims: Malaria parasites attach to molecules on midgut surface of Anopheles mosquitoes to continue their life cycle. Here we try to evaluate the effect of anti-Anopheles midgut antibodies on coating these molecules and consequently blocking the transmission cycle of Plasmodium berghei inside their vectors. Materials & Methods: Balb/c mice were immunized with homogenized and degly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016